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A new, efficient, and accurate method has been developed for computing
unsteady, incompressible, viscous flows in a domain where two dimensions
are unbounded, the third dimension is periodic and the vorticity is rapidly
decaying in the unbounded directions. We use the term unbounded to mean
doubly infinite (no boundaries of any kind). This is an extension of the
methods described by others for flows with two periodic and one unbounded
direction, where the irrotational velocities outside the vortical domain are
treated analytically. The new method is shown to be both accurate and effi-
cient. The method presented here has finite, but arbitrarily high order, formal
accuracy, and incurs substantial additional cost for a given mesh. However,
this increased cost is more than offset by the reduction in the number of
mesh points required for a given accuracy. The result is that for accurate
computations, the present method can be orders of magnitude more efficient
than others currently in use. This paper presents the method, discusses
implementation issues, validates its accuracy, and presents sample
calculations. Q 1997 Academic Press

1. INTRODUCTION

Many current scientific studies involve incompressible, vortical flows that reside
in domains which are unbounded in two directions and periodic in the third. An
example is the problem that motivated our study, the temporal evolution of aircraft
wake vortices. Other problems of this type include the growth, stability, and mixing
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behavior of 3D jets and wakes. Due to their unbounded nature, the accurate
simulation of these flows can be expensive.

Many efficient and accurate methods have been developed for domains which
are unbounded in only one direction. These methods [1–5] involve mapping the
infinite physical domain to a finite computational domain and applying finite differ-
ence, Chebyshev or Fourier spectral methods on the mapped domain. Canuto et
al. [6] discusses many of these methods, which have been used extensively. When
these methods are applied to problems which are infinite in two directions, a large
portion of the mesh points, which are required by the mapping, lie outside the
domain of interest. Their efficiency suffers accordingly.

Recently, methods have been developed for 1D unbounded flows which, assuming
incompressibility and compact vorticity, represent the far-field velocities with ana-
lytic functions [7–9]. The method due to Corral and Jiménez [8] is particularly
attractive. It retains the resolution and efficiency characteristics of Fourier spectral
methods and enforces the infinite boundary conditions exactly with negligible cost.
This method has been used and extended to allow for mean growth by Sondergaard
[10]. Unfortunately, these 1D unbounded methods can only be applied to problems
with two unbounded directions by extending a second dimension to a suitable
distance and applying a periodic boundary condition. This severely limits the accu-
racy and adds a large computational overhead.

The success of the method due to Corral and Jiménez in 1D unbounded flows
motivated us to extend it to flows which are unbounded in two directions. This
extension is presented in Section 2. Pertinent aspects of our implementation are
presented in Section 3. The accuracy and convergence characteristics of this new
method are presented in Section 4, 5, and 6. Section 7 compares its performance
to other applicable methods in terms of efficiency. Section 8 presents the results
of two sample computations.

2. THEORY

2.1. Analytical Matching in One Dimension

The method we present uses an analytical representation for the velocity outside
of the computational domain. This idea is not new and has been applied to vortical
flows which have one unbounded direction and have rapidly decaying vorticity in
that direction. Spalart [9] efficiently and accurately represented such flows using
Jacobi polynomials as basis functions. Rapid convergence of the velocity was
achieved by recognizing that the irrotational velocity, outside the domain of interest,
obeys Laplace’s equation and must decay as O(e2c ux u). Here c is the magnitude of
the wave-vector in the periodic directions and x is the coordinate in the unbounded
direction. For wave-vectors of small magnitude, the decay is slow and the domain
must be extended to large distances before an ‘‘infinite’’ boundary condition can
be applied. However, if ‘‘extra’’ basis functions, which decay like e2c ux u, are included
for every wave-vector, the infinitely distant boundaries can be represented exactly.

Corral and Jiménez [8] extended this idea by noting that these slowly decaying
velocity modes need not be included in the set of basis functions at all. The amplitude
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of these modes can be computed from the amplitudes of the other, rapidly decaying
modes. In this way the irrotational modes can be used as a boundary condition, or
correction, to the solution obtained using only the rapidly decaying modes. Using
this approach, they developed a scheme which used Fourier spectral methods in a
domain with finite extent and periodic boundary conditions. The unbounded charac-
ter was achieved by adding an irrotational correction to the velocity. Again, this
requires that the vorticity in the problem decay rapidly in the unbounded direction.
This irrotational correction requires negligible computational effort. Corral and
Jiménez also describe a technique for treating the viscous terms implicitly, which
is fully compatible with the method presented in this paper.

2.2. Analytical Matching in Two Dimensions

The efficiency and accuracy characteristics of Fourier spectral methods are well
known and the negligible cost of the extension to infinity make the Corral and
Jiménez scheme very attractive. Here we extend this scheme to domains which are
unbounded in two dimensions and periodic in the third. Note that the use of spectral
methods is not required for the implementation of the infinitely distant boundaries.
Anderson and Reider [11] have used similar ideas in the formulation of a finite-
difference method for the 2D flow about a circular cylinder in an unbounded
domain. Our derivation does not assume a familiarity with the previous work and
we approach the problem in a substantially different manner.

Before presenting the method, we should define exactly the class of flows we
intend to solve. The flows we are interested in are unsteady, incompressible, viscous
flows in a domain where two directions are unbounded and the other is periodic.
For the derivation of this method, we will make the further assumption that the
vorticity is compactly distributed in the unbounded directions, such that the vorticity
decays to zero in some finite distance. Because this last assumption will, in practice,
rarely be met, the performance of this method when vorticity exists on the matching
boundary is discussed in Section 5.

The governing equation for incompressible, unsteady flow can be written in
vorticity form as

­v

­t
5 2= 3 (v 3 u) 1

1
Re

=2v (1)

where u is the velocity field, v is the vorticity field, t is time, and Re is a Reynolds
number which is assumed to be constant. This equation has been nondimension-
alized with appropriately chosen length and velocity scales. Given an initial condition
on vorticity, the difficulty in solving (1) lies in determining u efficiently. Once u is
known, a variety of efficient methods exist for advancing the equation in time.

In developing the method, reference will be made to the domain decomposition
and coordinate systems defined in Fig. 1. The domain is decomposed into three
regions. The first region, termed the internal domain, is the space occupied by a
circular cylinder just large enough to contain all of the vorticity in the problem.
The cylindrical surface of this domain is termed the matching boundary. The second
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FIG. 1. Diagram showing the coordinate systems and domains used in this work.

region, termed the external domain, is infinitely large and represents all space not
in the internal domain. The third region, which we call the computational domain,
is the space occupied by a square cylinder just large enough to contain the internal
domain. Thus the internal and external domains are mutually exclusive and the
computational domain contains the entire internal domain and part of the exter-
nal domain.

Both cartesian (x, y, z) and cylindrical polar (r, u, z) coordinate systems will be
used in developing the method. In cartesian coordinates the velocity has components
u 5 (ux , uy , uz) with uz being the component in the axial (periodic) direction. In
cylindrical polar coordinates the velocity has components u 5 (ur , uu , uz), where
uz is unchanged. The polar coordinate system will always be centered in the cartesian
system such that the matching surface is a surface of constant radius, R. The polar
coordinate system must extend to a distance of at least r 5 Ï2 R in order to
discretize that portion of the computational space which lies in the external domain.
The symbols er , eu , and ez will be used to represent the unit vectors in cylindrical
polar coordinates.

2.2.1. Velocity decomposition. The efficient computation of the velocity field
begins by decomposing u into a vortical part, uV , a potential part, =f, and a uniform
flow part to accommodate the free-stream condition, uy :

u 5 uV 1 =f 1 uy . (2)

Here uV and f are field quantities, and uy is a constant. All of these variables are
found from the given vorticity field except uy which must be prescribed. Note that
the classical decomposition of a velocity field into a solenoidal vector component,
uV , and an irrotational scalar component, =f 1 uy is still present.

2.2.2. Vortical velocity component. The vortical velocity component, uV , is com-
puted from the vorticity–velocity relation assuming periodicity in all three direc-
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tions. This is easily done using Fourier spectral methods. However, since the Fourier
inversion of the Laplacian cannot represent the zero wave-vector coefficients, the
velocity due to the mean vorticity requires special treatment. Thus we define the
vortical velocity component as

uV 5Huv 1 (Gr/2fR2)eu 1 A ez for r , R (internal domain)

(G/2fr)eu 1 A ez for r . R (external domain),
(3)

where

uv 5 =22(2= 3 v) (4)

is the Fourier spectral solution to the vorticity–velocity relation, G is the mean axial
circulation, and A is a coefficient adjusted so that the mean axial velocity, outside
the region of vorticity, is zero. This definition of A ensures that the axial velocity
is zero at r 5 y. (For example, jet flows require nonzero values for A.)

These definitions of G and A constitute an exact treatment of the velocity due
to the mean axial and azimuthal vorticity, respectively, as they exist in a domain
which is unbounded in two directions. Since, by assumption, the vorticity is compact
and exists in a domain which is unbounded in r, there can be no mean radial
vorticity. Both G and A are constant in time and need only be determined once
from the initial conditions.

With this definition, uV is made up of both rotational and irrotational velocities
and contains the effects of infinitely many images of the (nonzero wave-vector)
vorticity field.

2.2.3. Potential velocity component. The potential velocity, =f, is a correction
to the velocity field which removes the effects of all the image vorticity. The
form of f is determined analytically. Irrotational flow must satisfy, via continuity,
Laplace’s equation,

=2f 5 0. (5)

Cast in cylindrical polar coordinates, (5) becomes

1
r

­

­r Sr
­f

­rD1
1
r 2

­2f

­u2 1
­2f

­z2 5 0. (6)

Taking the Fourier expansion of f in the azimuthal and axial directions, defined as

f 5 O
m
O
k

f̂mk(r)ei(mu1kz) (7)

and substituting into (6) results in

r 2 ­2

­r 2 (f̂mk) 1 r
­

­r
(f̂mk) 2 (k2r 2 1 m2)f̂mk 5 0 (8)
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for each azimuthal wavenumber, m, and axial wavenumber, k. The hat symbol is
used to denote the Fourier coefficient of a variable.

For all k ? 0, Eq. (8) is Bessel’s modified differential equation and thus the
solutions are the modified Bessel functions of the first and second kinds. Since the
velocity must be finite everywhere, solutions involving the modified Bessel function
of the first kind, Im , apply to the internal domain while solutions involving the
modified Bessel function of the second kind, Km , apply to the external domain:

f̂mk 5HIm(ukur) for r , R

Km(ukur) for r . R
(uku ? 0). (9)

When k 5 0, Eq. (8) becomes an Euler–Cauchy equation with solutions of the
form r um u and r2um u. Again, since the velocity must be finite everywhere, the r um u

solutions apply to the internal domain and the r2um u solutions apply to the exter-
nal domain.

f̂m0 5Hr um u for r , R

r2um u for r . R
(uku 5 0). (10)

The velocity potential can now be expressed as

f 5 5Om O
k

k?0

CmkIm(ukur)ei(mu1kz) 1 O
m

Cm0r um ueimu for r , R

O
m
O
k

k?0

DmkKm(ukur)ei(mu1kz) 1 O
m

Dm0r2um ueimu for r . R

(11)

and the velocity field can be expressed as

u 5Huv 1 =f 1 (Gr/2fR2)eu 1 A ez 1 uy for r , R

=f 1 (G/2fr)eu 1 A ez 1 uy for r . R.
(12)

2.2.4. Velocity matching. Equations (11) and (12) contain two unknown coeffi-
cients, Cmk and Dmk , for every (m, k) wavenumber pair. These coefficients are
determined by matching two components of the internal velocity with two compo-
nents of the external velocity on the matching surface. Despite the availability of
only two matching parameters, all velocities and velocity derivatives can be matched.
The radial and azimuthal velocity components will be matched first. This choice
will then be shown to be equivalent to the matching of any other pair of velocities.

The conditions for matching radial and azimuthal velocities are

[(uv 1 =f) · er]r5R2 5 [=f · er]r5R1 (13)
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and

[(uv 1 =f) · eu]r5R2 5 [=f · eu]r5R1 , (14)

where the subscripts, r 5 R2 or r 5 R1, denote that these terms are to be evaluated
on the matching boundary using the form of the potential function which applies
to the internal or external domain, respectively. Substituting (11) into (13) and (14),
replacing the vortical velocity terms with their Fourier expansions, and invoking
orthogonality gives, for Fourier components with k ? 0,

ukuDmkK9m(ukuR) 2 ukuCmkI9m(ukuR) 5
`

(uv · er)mk (15)

and

im
R

DmkKm(ukuR) 2
im
R

CmkIm(ukuR) 5
`

(uv · eu)mk , (16)

where the primes denote derivatives of the Bessel functions with respect to their
argument. For Fourier components with k 5 0, the matching equations are

2umuDm0R2um u21 2 umuCm0R um u21 5
`

(uv · er)m0 (17)

and

imDm0R2um u21 2 imCm0R um u21 5
`

(uv · eu)m0 . (18)

If instead, the radial and axial velocity components were used in the matching,
(16) would, for k ? 0, be replaced with

ikDmkKm(ukuR) 2 ikCmkIm(ukuR) 5
`

(uv · ez)mk . (19)

Multiplying (16) by R/(im) and (19) by ik, equating right-hand sides, and rearrang-
ing gives

im
R

`
(uv · ez)mk 2 ik

`
(uv · eu)mk 5 0. (20)

This merely restates that the radial component of vorticity must be zero on the
matching boundary. Since this is true by assumption, matching radial and azimuthal
velocity is entirely equivalent to matching radial and axial velocity for k ? 0. Thus,
Eqs. (15)–(18) match all three components of velocity on the matching surface.
The axial velocity cannot be used to match coefficients when k 5 0 because no
relation equivalent to (18) involving axial velocity can be formed. Likewise, the
azimuthal velocity cannot be used to match coefficients when m 5 0 and (19) must
be used.

Since all components of velocity are continuous across the matching surface,
which is a cylinder, all derivatives with respect to u and z must match. Continuity
can then be used to show that all higher derivatives of velocity are continuous as
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well. Thus, for smooth, compact vorticity distributions, the matching equations,
(15)–(19), ensure that all velocities and all derivatives of velocity are continuous
across the matching boundary.

Solving the matching equations gives

Cmk 5 5
imKm(uv · er)mk 2 RukuK9m(uv · eu)mk

imuku(ImK9m 2 I9mKm)
for (k, m ? 0)

2
(uv · er)m0

2umuR um u21 2
(uv · eu)m0

2imR um u21 for (k 5 0)

kK0(uv · er)0k 1 iukuK90(uv · ez)0k

kuku(I0K90 2 I90K0)
for (m 5 0),

(21)

` `

` `

` `

where it is understood that all Bessel functions are evaluated at ukuR. Since the
mean velocity terms have been treated exactly, C00 5 0. With Cmk known, Dmk is
found from (15)–(19).

3. IMPLEMENTATION

Although the analysis in the previous section completely defines the computation
of the velocity and thus the method, its success depends on efficient implementation.
We have chosen Fourier spectral methods for the solution of (4). The standard
fourth-order Runge–Kutta time advancement is used for (1). In the interest of
efficiency, all of the required Bessel functions are computed once, taking advantage
of the recursion relations [12], and stored.

De-aliasing of the nonlinear term in (1) is done by using the 2/3 rule on uv and
v. The series representation of the potential velocity is not similarly truncated, but,
since it is a linear function of the vorticity field, the coefficients for the upper 1/3
wavenumbers are zero.

Computation of the potential velocity field requires two interpolations. The vorti-
cal velocity, uv , constructed on a cartesian mesh, needs to be interpolated to points
on the cylindrical matching boundary. The transform of these interpolated velocities
are used in (21). Since the axial transform of the potential velocity is most easily
formed on the cylindrical polar mesh, using (11), it needs to be interpolated back
to the cartesian computational mesh to form the time derivative terms.

Both of these interpolations are performed using Lagrange interpolation of arbi-
trary order. By that we mean a fixed interpolation order is specified at startup and
all interpolation weights are computed once and stored. In this way the interpolation
fixes the formal accuracy of the method, but since it can be set arbitrarily high, it
need not compromise the accuracy of the spectral computation of (4).

4. VALIDATION

Before this method can be confidently used, its accuracy and convergence
characteristics must be confirmed. All aspects of our code have been independently
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validated. However, since the new aspect of this method is the computation of
velocity in a domain that is unbounded in two directions from a given vorticity
field, only the validation of this step is presented. Before validation can begin,
analytical representations of the vorticity distribution and the associated velocity
distribution are required for comparison. These analytical functions are devel-
oped first.

4.1. Test Cases

The test cases for the velocity computation were constructed by solving the
3D linearized perturbation equations for an inviscid, incompressible, axisymmetric
columnar vortex with potentially nonzero axial velocity. The derivation of these
equations and the computation of their associated eigenfunctions has been per-
formed by many others. The equations will be briefly outlined here. We refer the
reader to other works for details [13–15].

We begin with the 3D incompressible Euler equations,

= · u 5 0

(22)Du
Dt

5 2
=p
r0

,

where u is the velocity vector, p is the pressure, and r0 is the (constant) density.
A standard linear stability analysis of (22), assuming perturbation quantities of
the form

q 5 O
m
O
k

q̂mk(r)estei(mu1kz), (23)

where q represents any perturbation quantity, results in four equations for the
perturbation velocities and pressure. The boundary conditions are formed from the
requirements that the perturbation be smooth at r 5 0 and that all perturbations
decay to zero at r 5 y. Solving the coupled system for one of the velocities gives the
dispersion relation (eigenvalues) and eigenfunctions of the different perturbation
modes (see [13, Eq. (18)]).

The mean velocity profiles used when computing the perturbation eigenfunctions
are very important. To work well with the Fourier spectral methods, the associated
mean vorticity must be smooth. To satisfy the assumptions of the method given in
this paper, the mean vorticity must be compact, but, to assess the benefit of the
boundary conditions, the velocity must not be compact. A mean vorticity/velocity
profile satisfying these requirements has been constructed. These profiles have been
nondimensionalized using r0 , G0/r0 , and G0/r 2

0 as reference length, velocity, and
vorticity scales, respectively. The mean vortex radius, r0 , is defined as the location
of maximum azimuthal velocity and G0 is the circulation of the mean vortex. We



110 RENNICH AND LELE

FIG. 2. The mean azimuthal velocity and axial vorticity distributions.

define a scaling h 5 cr and use the following distribution for mean axial velocity
which contains both a rotational and an irrotational component:

uu 5
c

2f 5
1
h

1 Sh 2
1
hD exp S h2

h2 2 1D for h # 1

1
h

for h $ 1.

(24)

The coefficient c 5 0.7795028144572484 is set to correctly scale the vortex. The
associated vorticity distribution is

gz 5
c2

f 5h2 2 2
h2 2 1

exp S h2

h2 2 1D for h # 1

0 for h $ 1.

(25)

The advantage these distributions have over those used by others [16] is that explicit
formulas exist for both the mean vorticity and the mean velocity which simplifies the
computation of errors. Figure 2 shows these mean profiles. The compact character of
the vorticity and the noncompact character of the velocity is apparent.

Vortices with an axial velocity component in the mean flow are also considered.
For convenience, the same distribution as in (25) (vorticity) is used, scaled by the
parameter Vz :

uz 5 Vz 5h2 2 2
h2 2 1

exp S h2

h2 2 1D for h # 1

0 for h $ 1.

(26)

To test all aspects of the code, four test cases will be considered.
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FIG. 3. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation velocity
for Case 2. All components not shown are zero.

4.1.1. Case 1. Case 1 tests the convergence of velocity induced by an axisymme-
tric columnar vortex with no axial flow (Vz 5 0). The mean (m, k 5 0) axial vorticity
mode is the mode for which velocity decays most slowly with radius, extending well
beyond the vortical region. This is often the mean flow in cases of interest. This
case verifies the matching conditions for the k 5 0 wavenumber components. The
vorticity and velocity profiles are as shown in Fig. 2, but scaled such that the
maximum velocity magnitude is unity.

4.1.2. Case 2. Case 2 tests the convergence of velocity due to the first azimuthal
mode vorticity perturbation of the mean vortex without any axial flow (m, k 5 1,
Vz 5 0). This verifies the matching conditions for general axial and azimuthal
wavenumber. The eigenvalue, from (23), for this perturbation is s 5 (0.0, 0.0528623).
For this case the mean vorticity is omitted and the perturbation velocities are scaled
such that the maximum velocity magnitude is unity. The perturbation velocity
profiles for this case are shown in Fig. 3. The perturbation vorticity profiles are
shown in Fig. 4.

4.1.3. Case 3. Case 3 tests the convergence of velocity due to an axisymmetric
vorticity perturbation of the mean vortex with axial flow (k 5 2, m 5 0, and
Vz0 5 1/2). This case verifies the matching conditions for m 5 0. The eigenvalue
for this case is (0.0, 0.0752124). Again, the mean flow is omitted and the perturbation
velocities are scaled such that the maximum velocity magnitude is unity. The pertur-
bation velocity profiles for this case are shown in Fig. 5. The perturbation vorticity
profiles are shown in Fig. 6.

4.1.4. Case 4. Case 4 tests the convergence of velocity due to a fairly arbitrary
perturbation to the mean vortex. This perturbation is of higher order in the azi-
muthal direction, has strong axial flow, has strong gradients in the perturbation
quantities, and is included to show trends in the convergence characteristics. For
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FIG. 4. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation vorticity
for Case 2. All components not shown are zero.

this case, k 5 1.5, m 5 2, and Vz 5 15. The high axial velocity is required to prevent
extremely sharp gradients. The eigenvalue for this case is (20.443334, 21.41786).
Again, the mean flow is omitted and the perturbation velocities are scaled such
that the maximum velocity magnitude is unity. The perturbation velocity profiles
are shown in Fig. 7. The perturbation vorticity profiles are shown in Fig. 8.

4.2. Velocity Convergence

To test the effectiveness of the analytical matching boundary treatment, the
global error in velocity versus the number of azimuthal wavenumbers retained in

FIG. 5. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation velocity
for Case 3. All components not shown are zero.
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FIG. 6. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation vorticity
for Case 3. All components not shown are zero.

the analytical matching, Nu , is computed for each test case. These tests are designed,
as much as possible, to isolate this effect. They are run in a domain whose x and
y dimensions are exactly equal to the cross-axial extent of vorticity (h 5 1), thus
ensuring that there is zero vorticity on the matching boundary. A 256 3 256 3 4
cartesian mesh and a 192 (radial) by 512 (azimuthal) polar mesh is used. Since each
test case contains only one axial wavenumber, the low axial resolution is sufficient.
The dense cross-axial cartesian mesh permits very accurate computation of the
vorticity–velocity relation (4). The dense polar mesh, kept constant regardless of
the number of matching modes actually used, and ninth-order accurate Lagrange

FIG. 7. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation velocity
for Case 4. Thick lines correspond to the real components and thin lines correspond to the imagi-
nary components.
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FIG. 8. Radial profiles of the axial and azimuthal Fourier transforms of the perturbation vorticity
for Case 4. Thick lines correspond to the real components and thin lines correspond to the imagi-
nary components.

interpolation allow very accurate polar-cartesian interpolation. All vorticity fields
are scaled so that the peak velocities are unity, permitting direct comparison of the
errors. In all cases the global velocity error is computed as

iu 2 u*i 5 F1
V
E

V
uu 2 u*u2 dVG1/2

, (27)

where u* represents the exact (reference) velocity field and u is the computational
result. V is the volume of the computational domain which means that the error
norm contains contributions from both the internal and external domains.

The results of this test, shown in Fig. 9, demonstrate that in all cases the error
in velocity converges spectrally with Nu until saturation. The matching conditions
do indeed work very well. This test also demonstrates that the domain need only
contain the vortical fluid—no extra space is needed between the vortical region
and the boundaries of the computational domain.

To examine the convergence of the scheme as a whole, Figs. 10 and 11 plot the
velocity error versus the cross-axial mesh resolution, Nx , Ny , for Cases 1 and 4,
respectively. In both cases the axial resolution is kept constant at 4 and the parame-
ters Nx , Ny , and Nu are varied together. The order of accuracy of the interpolation
scheme is also varied in each case to illustrate its importance. Both cases show that
the global velocity error decreases with increasing mesh resolution. Figure 10 shows
that the order of accuracy of the method is formally limited by the order of the
interpolation scheme used. Figure 11 indicates that, for more complex flows, it is
not necessary to use unusually high order interpolation to preserve the advantages
of the Fourier spectral solution of (4).
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FIG. 9. Effect of increasing the number of azimuthal modes in the matching procedure on the norm
of the velocity error for all four test cases.

5. NONZERO VORTICITY ON MATCHING BOUNDARY

The development of this method so far has been simplified by the assumption
that the condition of zero vorticity on the computational boundary has been met.
In practice this will rarely be true. Thus, as a practical consideration, it is useful to
know the relationship between the level of vorticity on the matching boundary and
the associated error in the velocity.

Vorticity on the matching boundary produces rotational flow of equivalent magni-

FIG. 10. Norm of the velocity error vs mesh resolution for Case 1. Curves are labeled with the
order of accuracy for the interpolation scheme used.
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FIG. 11. Norm of the velocity error vs mesh resolution for Case 4. Curves are labeled with the
order of accuracy for the interpolation scheme used.

tude on the boundary. These rotational velocities can be considered an error which
is added to the irrotational velocities used in the computation of the matching coeffi-
cients in (21). Constructing the potential velocities from these coefficients produces
an error that is linearly proportional to the level of vorticity onthe matching boundary.
Although not obvious from the form of (21), the magnitude of these velocity errors
is, at most, equal to the magnitude of vorticity on the matching boundary.

Spurious vorticity in the external domain (that is, in the external part of the
computational domain, but not on the matching boundary) produces irrotational
velocity on the matching boundary. This irrotational velocity is, to the method,
indistinguishable from the irrotational velocity due to the image vorticity in (4), in
the sense that it does not match the known form, (9) and (10), for a domain which
is unbounded in two directions. Thus, the matching procedure removes this spurious
velocity. If vorticity exists in the external domain because the true vorticity field
never decays to zero or it has been diffused by viscosity, then, provided this external
vorticity decays at least exponentially fast (as viscous diffusion will provide), a
Green’s function analysis of (4) shows that the magnitude of the velocity due to
the unrepresented vorticity is, at most, of equal magnitude and linearly proportional
to the level of vorticity on the matching boundary.

The end result is that the global velocity error is linearly proportional to the
level of vorticity on the matching boundary. This result was tested by adding spurious
vorticity, with its peak on the matching boundary, to each of the test cases. With
everything else held constant, the global error in velocity was shown to vary exactly
linearly with the amplitude of the spurious vorticity.

For comparison, a two dimensional version of the test done by Corral and Jiménez
[8, Fig. 2b] is performed using a Gaussian vorticity distribution of

gz 5 e2r2
(28)
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FIG. 12. Global error in velocity vs vorticity on the matching boundary for a columnar Gaussian
vortex.

and a corresponding reference velocity distribution of

u* 5
1
2r

(1 2 e2r2
)eu . (29)

The velocity computation is performed on a number of domains of different sizes
such that the magnitude of vorticity on the boundary varies significantly. The cross-
axial domain sizes are varied from 1 to 13. The mesh density is kept constant at
24 meshpoints per unit length. The global error in velocity versus the level of
vorticity on the matching boundary is presented in Fig. 12. The norm of the vorticity
on the matching boundary is computed as

iviboundary 5 F1
A
E

A
uvu2 dAG1/2

, (30)

where A is the matching boundary. The velocity error is linear with respect to the
vorticity on the matching boundary.

Another practical test is to compute the global error in velocity for vorticity
distributions which are placed so that finite vorticity exists on the matching
boundary. This was done for each of the four test cases described in Section
4.1. The results, presented in Fig. 13, show that global error in the velocity is
approximately linearly proportional to iviboundary and that for all cases the
magnitude of the global error in velocity is less than the magnitude of vorticity
on the matching boundary.

The end result is equivalent to the conclusion arrived at by Corral and Jiménez.
So long as the magnitude of the vorticity on the matching boundary does not exceed
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FIG. 13. Global error in velocity vs vorticity on the matching boundary for the four test cases.

the magnitude of the vorticity resolution error elsewhere in the internal domain,
the magnitude of the global velocity error will not be affected.

6. NONZERO VORTICITY ON COMPUTATIONAL BOUNDARY

Because the velocity field is, in general, nonperiodic, when finite amounts of
vorticity reach the computational boundary (recall that this is the surface of the
cubic region in Fig. 1), the nonlinear term in the vorticity transport equation will
also be nonperiodic. When this nonlinear term is formed as written in (1), 2= 3

(v 3 u), this non–periodicity results in Gibbs phenomenon errors. As Corral and
Jiménez note, for 2D flows this nonlinear term reduces to just the convection term.
When computed in this manner, 2(u · =) v, no derivatives of the discontinuous
velocity field are taken and the Gibbs errors, while still present, are substantially
reduced. In 3D flows this advantage is lost due to the vortex stretching term.

In the present case we are primarily interested in 3D flows and we wish to form
the nonlinear term as written in (1) since it is computationally more efficient. Figure
14 shows a pair of counterrotating vortices convecting themselves through the lower
computational boundary. Gibbs phenomenon errors are clearly present. However,
under normal circumstances these Gibbs phenomenon errors can be shown to have
a magnitude which is equal to or less than the magnitude of the vorticity on the
computational boundary and the previous conclusion remains essentially un-
changed. As long as the level of vorticity on the computational boundary is of equal
or lesser magnitude than the vorticity errors elsewhere in the domain, the magnitude
of the error in the time derivative of vorticity will not be affected.

To show this, let us assume that a vortex of circulation G has approached to
within a distance L of the computational boundary (see Fig. 15). Let N represent
the number of mesh points spanned by L. We can estimate the magnitude of the
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FIG. 14. Vorticity field as a pair of counterrotating vortices convect themselves through the computa-
tional boundary. Solid contours represent positive vorticity. Dotted contours represent negative vorticity.
The square box is the computational boundary.

velocity on the computational boundary as G/2fL. Assuming a finite level of vorticity
on the computational boundary with magnitude gb , the cross product of vorticity
and velocity has a magnitude uv 3 uu P Ggb/2fL. A conservative (large) estimate
of the magnitude of the curl of this quantity is found dividing it by one half the
mesh spacing, or u = 3 (v 3 u)u P GgbN/fL2. We shall estimate the discontinuity of
this quantity on the computational boundary by multiplying by two. The maximum
amplitude of the Gibbs phenomenon is about 10% of the amplitude of the disconti-
nuity [6]. Thus, the magnitude of the Gibbs phenomenon errors in the time derivative
of vorticity is u­v/­tu P 0.2GgbN/fL2. Based on a convective CFL number of one,

FIG. 15. Diagram showing the symbols used in Section 6.
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FIG. 16. Magnitude of the maximum vorticity on the computational boundary and the global error
in velocity, normalized by their initial values, over 400 RK4 timesteps for an isolated Gaussian vortex.

each timestep is 2fL2/GN. Thus, at every timestep, the magnitude of the Gibbs
error in the vorticity update is not more than 0.4gb , and does not change the
magnitude of the error already present.

This simple analysis does not address the compounding effect of time, the dimin-
ishing effect of viscosity, the smoothing effect of de-aliasing or the cancelation which
would occur over many timesteps when the vorticity errors near the computational
boundary oscillate about zero. A computational test of this effect was performed
by initializing the vorticity field with the a Gaussian distribution of vorticity, as
defined by (28), over a 6 3 6 3 1 domain using a 128 3 128 3 4 mesh. The maximum
vorticity on the computational boundary for this case should be 2.3 3 10216. Applying
the Sd rule to the initial vorticity field (truncating of the Fourier series) places vorticity
on the computational boundary with a maximum value of 1.3 3 1024. Thus, since
a relatively large amount of vorticity exists on the computational boundary and the
velocity field is nonperiodic, we would expect this to be a clean test of the Gibbs
errors in the nonlinear term. This field was advanced in time for 400 RK4 timesteps
using a CFL number of 1 at Re 5 y. Figure 16 shows the development of the
maximum level of vorticity on the computational boundary and the global error in
velocity, normalized by their initial values. The slight variation in velocity error,
and the eventual decrease of the maximum vorticity magnitude on the boundary,
indicates that the Gibbs phenomenon errors in the nonlinear term are not caus-
ing problems.

In this section we have shown that large scale vorticity on the computational
boundary can be catastrophic due to Gibbs phenomenon errors. We have also
shown that for low levels of vorticity on the computational boundary these Gibbs
errors are bounded at an equivalent magnitude and that in practice they are benign.
We will conclude by saying, in our experience, when the magnitude of vorticity on
the computational boundary is kept low, Gibbs phenomenon errors in the nonlinear
terms do not upset the accuracy of the computation.
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TABLE I
Table Showing the Relative Increase in CPU Cost for the Method Presented Here vs

Periodic Extension in All Directions or the Method of Corral and Jiménez

Interpolation % increase in cpu cost % increase in cpu cost
Nx and Ny Nu order for velocity computation for time advancement

256 512 6 115 40
256 512 3 55 20
128 256 6 125 45
128 256 3 65 20

7. EFFICIENCY

Unlike the method due to Corral and Jiménez, the cost for implementing this
analytical matching condition is not negligible. Depending on the mesh size and
the order selected for the interpolation routine, the cost to compute the potential
flow correction can be more than the cost of the vorticity–velocity computation
(4). Even when the cost of an entire time advancement step is considered, this
method can take 50% more time than a method using periodically extended bound-
aries in all directions. Table I shows the relative increase in cpu times for this
method versus using periodically extended boundaries for several different mesh
sizes and interpolation orders. Since the 1D analytical matching of Corral and
Jiménez incurs almost no more cost than the periodically extended boundary case,
these numbers represent the increase in time over that method as well. These
numbers were taken from our implementation of the present method on a Cray
C90 making extensive use of the solid-state storage devices to reduce core memory
size. They are based on a velocity computation and a first-order Euler time advance-
ment step by themselves. No initialization, output or postprocessing is included.
The mesh sizes quoted represent the mesh sizes used before de-aliasing. The results
clearly show high cost of the Lagrange interpolation. Cpu times for other implemen-
tations on other systems may vary significantly, but should not affect the conclusions.

Much more important than the cpu time required for a given mesh is the cpu
time required to achieve a suitably accurate result. This is the most practical measure
of the value of a method. To assess this, the relationship between error in the result
and the cpu time used is found for the three applicable boundary treatments; 3D
periodic extension, Corral and Jiménez’s method, and the present method. These
trends are computed using a vorticity field which contains two counterrotating
columnar vortices with mean vorticity given by (25). The vortices have unit radius
and a core separation of two. Vorticity contours for this case are shown in Fig. 17.
Velocity contours are shown in Fig. 18. In these figures the square computational
domain and circular matching boundary (for the present method) are also shown.
This emphasizes the level of velocity in the external domain and the proximity to
which significant vorticity approaches the matching boundary. In every case, all
parameters were adjusted to achieve the minimum error for a given amount cpu
time. For the 3D periodic extension, this involved adjusting the cross-axial extent
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FIG. 17. Vorticity contours of the test case used in Section 7. Negative vorticity is shown by a dotted
line. Contour magnitudes begin at 60.025 and step by 0.05. The square box denotes the limits of the
computational domain and the circle represents the matching boundary.

of the domain for every mesh. For the Corral and Jiménez method, this involved
adjusting the extent of the domain in the periodic cross-axial direction and the
mesh density in the analytically extended cross-axial direction. Figure 19 shows the
error in velocity versus the cpu time required for the velocity computation for the
three relevant boundary treatments. When compared in this manner, the current
scheme shows a remarkable improvement over other methods. While it is more
expensive for a given mesh size, it can be orders of magnitude less expensive for
a given accuracy.

8. SAMPLE PROBLEMS

This section shows two applications of the boundary treatment developed in this
paper. In both cases, the flow is representative of an aircraft’s vortex wake, the
problem which motivated the development of this method.

8.1. Crow Instability

The first example is the 3D simulation of a pair of perturbed, incompressible,
counterrotating columnar vortices. The goals of this simulation are to reproduce
the Crow instability [17] in a three-dimensional nonlinear calculation for a configu-
ration that is representative of actual aircraft vortices and to track the growth of
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FIG. 18. Velocity magnitude contours of the test case used in Section 7. Contour magnitudes begin
at 60.005 and step by 0.02. The dashed contour represents a velocity magnitude of 0.065 (22% of
peak). The square box denotes the limits of the computational domain and the circle represents the
matching boundary.

FIG. 19. Global error in velocity vs cpu time required by the velocity computation is shown for (1)
domains which are analytically extended in two directions, (2) domains which are analytically extended
in one direction and periodic in the other two, and (3) domains which are periodically extended in
all directions.
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the instability through the linear and nonlinear regimes. See Rennich and Lele [18]
for details.

To make this simulation representative of aircraft vortices, the estimated vortex
core diameter to wingspan ratio due to Spreiter and Sacks [19] is used, resulting
in a vortex separation of 10.190. All quantities continue to be nondimensionalized
following the definitions in Section 4.1, with the addition of a second dimensionless
time scale, G0/2fb2, where b is the separation of the two vortices (span). This second
dimensionless time is often used when studying the Crow instability and is given
in parenthesis following the first.

Following Crow’s analysis, the most unstable axial wavenumber for such a config-
uration is k 5 0.07221. Since Crow’s analysis assumes a Rankine vortex profile, the
configuration requires an adjustment to account for the smooth vortices used here.
This is done by modifying the perturbation wavenumber so that the perturbation
eigenvalue, s, for bending waves on the smooth vortices, matches the eigenvalue for
the Rankine vortices perturbed at the original wavenumber. That is, the perturbation
wavenumber is adjusted so that the self-induction velocities are equal. Since we
are interested in the linear growth of the Crow instability, the vortices are perturbed
with symmetric sinusoidal perturbations inclined at 458 to the plane containing both
vortices. This shape very closely approximates the Crow eigenmode. The initial
amplitude of each perturbation is 0.015. The Reynolds number based on circulation
for this case, Re 5 G/n, is 100,000.

The computation was performed in several stages. The simulation was initiated
on a 20 3 20 3 85.268 domain with a 128 3 128 3 4 mesh. This domain was large
enough to allow significant growth of the instability and contained only enough
points in the axial direction to resolve the mean and fundamental modes. This axial
resolution was presumed sufficient during the linear growth of the instability and
would conserve cpu time. At t 5 1633.68 (2.50403), the solution was interpolated
to a mesh with 128 points in the axial direction so that any nonlinear interactions
would be resolved. Finally, towards the end of the simulation, the solution was
interpolated to a 30 3 30 3 85.268 domain with a 192 3 192 3 128 mesh to
accommodate further growth of the instability.

Figure 20 shows three snapshots of vorticity. These clearly show how a pair of
counterrotating vortices, with an imperceptible initial perturbation, evolves into
the Crow instability. Figure 21 shows a perspective view of the vorticity contours
at the late time.

The growth of the instability can be tracked by computing the maximum cross-
axial displacement in the centroid of axial vorticity of each vortex. This is essentially
the quantity used by Crow in his analysis. Figure 22 compares the computed growth
of the instability with the growth predicted by Crow’s linear, inviscid, vortex filament
analysis. The two curves are indistinguishable for well over a decade of growth.
Towards the end of the simulation nonlinear effects become important and cause
the computed growth rate to accelerate.

This simulation shows the size of the instability beyond which nonlinear effects
become important. The close match between the observed and predicted amplifica-
tion rate demonstrates the validity of Crow’s linear, inviscid analysis. Further studies
of the Crow instability performed using this method are described in [20].
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FIG. 20. Vorticity contours, ugu 5 0.05, for the Crow instability simulation. End and top views
are shown.

8.2. 2D Wake from an Idealized Flapped Wing

As a second example we compute the evolution of the 2D wake due to an idealized
flapped wing. Here we are interested in gaining a qualitative understanding of the
flow. The flapped wing is idealized as a summation of two elliptical lift distributions,
with equal root circulation and spans which are different by a factor of two. Total
root circulation G0 is set to one. The effective span of the wake, defined as

b0 5
1
G0

Eb/2

2b/2
G(x) dx (31)

FIG. 21. Perspective view of the fully developed Crow instability. Isosurface of vorticity at ugu 5

0.05 is shown; t 5 4814 (7.379).
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FIG. 22. Growth of the Crow instability. The solid line shows the computed result and the dashed
line shows the prediction of Crow’s linear, inviscid analysis.

is set equal to the span of the vortex pair in the previous case, b0 5 10.190. The
resulting circulation distribution is given in Fig. 23. Following the work of Spalart
[21], this one-dimensional circulation distribution is convolved with a Gaussian
smoothing function,

1
f«2 expS2

x2 1 y2

«2 D , (32)

to produce a smooth, two-dimensional vorticity distribution. We used « 5 0.2. Since
there is no longer an initial columnar vortex, the length scale by which the problem
is nondimensionalized needs to be clarified. We now use Spreiter and Sacks’ estimate
of the core size, 0.0981b0 [19]. The result is that the time scales for the two sample
problems are equivalent. The Reynolds number based on circulation for this calcula-
tion is G/n 5 10,000. A mean vertical velocity of G0/2fb0 is prescribed so that the
vorticity remains centered in the computational domain.

Figure 24 shows six snaphots of vorticity for the evolving flapped wake. The
initially planar sheet of vorticity rolls up into four nearly circular vortices. As the tip
vortices get convected through the flap vortices, they can be seen to deform slightly.

Figure 25 shows the last three snapshots of Fig. 24 with contours in log scale.

FIG. 23. Bound circulation distribution for an idealized flapped wing.
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FIG. 24. Vorticity contours of an evolving 2D flapped wake. Solid contours represent positive
vorticity. Dotted contours represent negative vorticity. The magnitudes of the contours are given below
each figure as [initial, final, interval]. The square box represents the limits of the computational domain.
The circle represents the matching boundary.

FIG. 25. Contours of vorticity magnitude for an evolving 2D flapped wake. The contours are in log
scale with the individual levels given below each figure in brackets. The square box represents the limits
of the computational domain. The circle represents the matching boundary.
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This scaling shows regions of low vorticity in much greater detail. These plots
emphasize the high resolution of the calculation and the extent to which significant
vorticity fills the domain. Most importantly these plots demonstrate how closely
vorticity can approach the matching boundary without causing any appreciable
error. The first two snapshots in Fig. 25 have contours adjusted so that a small
amount of spurious vorticity can be seen near the matching boundary. In the third
snapshot this spurious vorticity has disappeared, further demonstrating that small
levels of vorticity on or outside of the matching boundary do not pose a hazard.

9. CONCLUSIONS

We have successfully extended the analytical matching boundary condition due
to Corral and Jiménez [8] to flows which are unbounded in two directions. The
method has been fully described and its accuracy verified. When compared to other
methods applicable to incompressible vortical flows in 2D unbounded domains, this
method has been shown to be advantageous. When accurate results are required,
this method can be orders of magnitude more efficient than others currently in use.
Finally we have presented the results of two sample calculations which demonstrate
that the method is useful for problems of current interest.
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